Показаны сообщения с ярлыком вч. Показать все сообщения
Показаны сообщения с ярлыком вч. Показать все сообщения

понедельник, 22 ноября 2021 г.

Система радиоуправления без модулей и микроконтроллеров

Большой ассортимент электронных модулей, в продаже, дает возможность изготовлять сложные электронные устройства без необходимости понимать принципиальные электрические схемы и принципы их работы. Однако же умение конструировать электронные устройства на обычных радиодеталях дает возможность создавать разнообразные не шаблонные решения которые не могут быть эффективно реализованы с обычными модулями. Например используя обычные радиодетали можно сделать более дешевую систему радиоуправления и с большим числом каналов чем это возможно при покупке готовой. В одной из предыдущих статей -> http://electe.blogspot.com/2020/04/blog-post.html уже рассматривалась простейшая система радиоуправления с приемником без радиочастотного LC контура. Такой приемник улавливал и усиливал все радиосигналы и помехи которые были вокруг, поэтому использовать его можно только в свободном от сильных помех месте или со сниженной чувствительностью и на небольшом расстоянии от передатчика. Передатчик, при этом, должен быть достаточно мощным чтобы перекрывать помехи. При этом такой передатчик сам становиться неплохим источником помех. По вышеупомянутым причинам, приемники подобного типа имеют малое практическое применение. В основном их используют для проверки и настройки передатчиков, также их можно использовать например если нужно зафиксировать любой радиосигнал. Чтобы приемнику не мешали не предназначенные для него радиосигналы в нем должен быть радиочастотный LC контур резонансная частота которого должна быть равна частоте LC контура передатчика для данного приемника. При этом приемник может быть более чувствительным и работать с более слабым передатчиком на большем расстоянии чем в случае с приемником без радиочастотного LC контура. Передатчиком может быть, например, генератор Колпитца (ёмкостная трехточка) с индуктивной антенной которая является катушкой радиочастотного LC контура передатчика:
Рисунок 1 - Передатчик с индуктивной рамочной антенной

Конденсатор C1 можно не ставить, в схеме он для достоверности испытаний которые можно увидеть на видео внизу страницы. Размеры антенны также можно менять но при этом необходимо учитывать то что она должна обладать некоторой индуктивностью достаточной для работы генератора. Поэтому её не надо делать слишком маленькой. Хотя чем более высокочастотный транзистор используется тем меньше антенна может быть. Конденсатором C4 можно настраивать LC контур на нужную частоту. Схем приемников с радиочастотными LC контурами существует много но наиболее дешевые и часто используемые для радиоуправления - это схемы со сверхрегенеративным каскадом т.к. радиочастотный усилитель, в таких схемах, может быть построен всего на одном транзисторе. Принцип работы сверхрегенератора довольно сложен но основная идея заключается в том что положительная обратная связь, усилителя радиочастоты, периодически меняется и пересекает точку оптимального усиления. Остальная часть схемы, для усиления низкой частоты и распределения сигнала на каналы, тривиальна и при её построении можно даже проявить фантазию. Например схема может быть такой:
Рисунок 2 - Приемник со сверхрегенеративным каскадом

Сверхрегенеративный каскад, с виду, напоминает генератор Колпитца используемый в передатчике т.к. усилитель в сверхрегенераторе имеет положительную обратную связь реализованную аналогично этому генератору. Однако в сверхрегенераторе эта связь периодически изменяется. Для того чтобы это происходило в схеме имеются детали L2, R3
и C5. Настройку сверхрегенеративного каскада можно производить конденсатором C4 (конденсатор C1 также можно не ставить) и резистором R2. Следить за реакцией приемника можно осциллографом. Если осциллографа нет то можно делать это пьезодинамиком на слух (см. видео внизу данной страницы), хотя это менее удобный и эффективный способ. На выходе сверхрегенеративного каскада стоит фильтр после которого имеется усилитель низких частот на VT2 которым может быть BC547 или аналогичный транзистор. Далее есть операционный на микросхеме LM358 (или аналогичной (главное чтобы был пушпульный выход а не открытый коллектор или что то подобное)) усилитель работающий в режиме компаратора после которого стоит емкостной делитель и одновибратор на втором операционном усилителе микросхемы LM358 (о таком одновибраторе есть отдельная статья -> http://electe.blogspot.com/2014/06/blog-post.html) Одновибратор нужен чтобы частые скачки напряжения объединять в один импульс. На выход одновибратора можно поставить например двоичный счетчик для распределения сигнала по некоторому количеству каналов. Это не самый удобный но, тем не менее, простой, рабочий и надежный способ распределения сигнала на несколько каналов. Так можно соединить несколько двоичных счетчиков с большим количеством выходов и получить очень много каналов но управлять чем либо, таким образом, будет очень не удобно т.к. нажимать кнопку для включения последних каналов придется много раз. Систему можно усовершенствовать но даже в таком виде для неё можно найти практическое применение. Видео о системе радиоуправления:

четверг, 2 апреля 2020 г.

Радиоуправление без ардуино, модулей, микроконтроллеров и программирования

На момент написания данной статьи в продаже существует множество готовых модулей для радиоуправления. Для использования некоторых из них нужны навыки программирования т.к. они имеют какой нибудь интерфейс для связи с ними например spi (как напр. nrf24) или uart. Однако само радиоуправление появилось задолго до появления в продаже таких модулей и специализированных микросхем. Даже до появления транзисторов для данных целей использовались электронные лампы и искровые разрядники. Готовые модули значительно упрощают процесс создания каких либо устройств с радиоуправлением а программисты создают всевозможные библиотеки, фреймворки, IDE, редакторы кода и прочие программные вещи которые также упрощают процесс использования модулей и избавляют от необходимости хорошо разбираться в программировании или разбираться в нем вообще. Однако умение использовать обычные транзисторы открывает большие возможности нежели умение использовать готовые модули. Используя транзисторы, как минимум, можно изготовить устройство со своими размерами. Можно влиять на такие параметры как цена готового изделия, дальность, помехоустойчивость и многие другие. К тому же изготовление системы радиоуправления на транзисторах это не всегда очень сложно. Давайте попробуем в этому убедиться собрав простейшую систему состоящую из передатчика с однотактным генератором с ёмкостной обратной связью и детектором поля прямого усиления. Схема передатчика приведена на рисунке:
Рисунок 1 - Передатчик

Вместо кт316г можно использовать какой либо другой высокочастотный транзистор с подходящими параметрами. Антенна является катушкой LC контура генератора. Частота генерации зависит от её индуктивности и если сделать антенну слишком маленькой то транзистор может не справиться и не начать генерировать. Размеры можно выбрать другие, возможно с другими размерами результат будет лучше но важно чтобы размеры антенны передатчика и приемника совпадали. Теперь рассмотрим схему приемника:
Рисунок 2 - Приемник

Схема у него очень простая. Антенна преобразует радиоволны в электрические сигналы которые усиливаются усилителями на транзисторах. Транзисторов в данной схеме целых 5 штук и первые 4 должны быть высокочастотными. Существуют схемы с меньшим колличеством транзисторов например сверхрегенеративная (которая уже есть в статьях данного блога) с всего лишь одним высокочастотным транзистором однако сверхрегенеративная схема чрезвычайно сложна в настройке. Поэтому несмотря на большее количество транзисторов, схема прямого усиления более проста в плане "заставить" её нормально работать. В данном приемнике нет LC контура который надо настраивать на частоту передатчика и поэтому данный приемник принимает радиосигналы в очень широкой полосе частот. Он даже может принимать сигналы от wifi или чего либо подобного т.е. ловит почти все помехи что есть, поэтому испытывать его желательно там где помех нет. Но даже несмотря на все недостатки собрав данное устройство и зажгя светодиод на расстоянии можно убедиться в том что сделать систему радиоуправления на транзисторах вполне реально!
Видео по данной теме:

КАРТА БЛОГА (содержание)

суббота, 3 февраля 2018 г.

Индукционный нагреватель на ZVS генераторе

ZVS генератор используемый в индукционных нагревателях очень прост в изготовлении и имеет малое количество деталей из которых он состоит. Давайте рассмотрим схему:
Рисунок 1 - Индукционный нагреватель на ZVS генераторе

Индуктором являются катушки L1 и L3 которые являются одной катушкой со средним выводом который через дроссель L2 подключен к плюсу питания. Стабилитроны VD2 и VD4 нужны для защиты затворов транзисторов от высокого напряжения. Через диоды VD1 и VD3 осуществляются обратные связи которые необходимы для возникновения генерации. Индуктор (на катушках L1 и L3) и конденсатор C1 образуют колебательный LC контур в котором создаются синусоидальные колебания. Частоту можно рассчитать в программе на странице http://electe.blogspot.ru/2011/02/blog-post_13.html или по формуле на той странице. По осциллограммам, при проверке данного нагревателя, получилось выяснить частоты на которых работает данный генератор:
f1 = 80 кГц - частота без холодной железяки в индукторе,
f2 = 67 кГц - частота с холодной железякой в индукторе.
При помещении стального предмета внутрь индуктора, увеличивается индуктивность LC контура и следовательно уменьшается резонансная частота. Когда стальной предмет нагревается он теряет свои ферромагнитные свойства и индуктивность уменьшается а частота увеличивается. После того как стальной предмет нагревается до красна и его ферромагнитные свойства теряются, его нагрев замедляется и при низкой мощности нагревателя дальнейший нагрев не происходит (см. видео ниже).
Индукционный нагреватель на ZVS генераторе хорошо подходит для нагрева железных предметов до красна. Если нужно нагреть их до бела и расплавить или нужно нагреть другие металлы например медь, алюминий, олово и т.д. то такой генератор скорее всего не "потянет". Транзисторные ключи силовых преобразователей должны работать в ключевом режиме для уменьшения потерь. Обычно при рассмотрении работы схем с транзисторами работающими в ключевом режиме, эти транзисторы представляют как управляемые идеальные ключи:
Рисунок 2 - Идеальная модель zvs генератора

Но на самом деле данный генератор далёк от идеала т.к. полевые транзисторы имеют паразитные ёмкости, сопротивление в открытом состоянии, проводимость в закрытом и т.д. Наибольшую неидеальность в схему привносят паразитные ёмкости т.к. они достаточно большие для того чтобы помешать транзистору быстро коммутироваться. Обычно эти емкости измеряются пикофарадами но если транзистору надо открываться и закрываться например 80000 раз в секунду то с этими емкостями приходиться считаться. Схема более приближенная к реальности будет выглядеть примерно так:
Рисунок 3 - Неидеальная модель zvs генератора с паразитными емкостями и активным сопротивлением

Т.е. полевой MOSFET транзистор - это скорее переменный резистор с паразитными емкостями затвора нежели идеальный переключатель. Для управления такими транзисторами обычно используют специальные микросхемы - драйверы.
Рисунок 4 - Управление MOSFET транзистором через драйвер

 Но в схеме ZVS генератора таких нет, поэтому транзисторы в нём будут нагреваться сильнее чем если бы драйвера там были. В ZVS генераторе заряд емкости затвор - исток и разряд емкости затвор - сток происходит через резистор подключенный к плюсу питания:
Рисунок 5 - Заряд емкости затвор - исток и разряд емкости затвор - сток

Понятно что резисторы ограничивают ток и желательно чтобы их сопротивление было как можно меньше но в данной схеме обойти это ограничение не получиться если кардинально её не менять. С разрядом емкости затвор - исток и зарядом емкости затвор - сток ситуация такая:
Рисунок 6 - Разряд емкости затвор - исток и заряд емкости затвор - сток

Разряд емкости затвор - исток происходит через другой открытый транзистор и открытый диод обратной связи. Несмотря на эти недостатки, данный генератор можно собрать и найти ему применение!

Предыдущее видео по работе генератора https://youtu.be/XoV4T0r0V7o
Предыдущая статья по работе генератора https://electe.blogspot.ru/2018/01/lc.html?showComment=1517669681734#c2199538723359217471
Электродуговой нагреватель https://youtu.be/tWJkg8M7nCU
транзистор irf640 http://got.by/28ui15, http://got.by/28uibn

готовый индукционный нагреватель на zvs генераторе http://ali.pub/28uimc


КАРТА БЛОГА (содержание)

понедельник, 8 января 2018 г.

Высокочастотный двухтактный LC генератор на биполярных транзисторах

Электрические генераторы высокочастотных колебаний применяются например для создания радиоволн. Радиоволны это электромагнитные волны и источником их являются электроны движущиеся с ускорением (положительным или отрицательным). Высокочастотные генераторы создают изменяющееся во времени ЭДС под воздействием которого электроны ускоряются и замедляются (ускоряются со знаком минус) в результате чего и создаются радиоволны. Чем с большей частотой работает генератор тем более высокочастотные радио волны создаются. Но для того чтобы создать радиоволны, мало одного генератора, для него нужна ещё и антенна. Для того чтобы антенна эффективно излучала радиоволны определенной частоты её размеры ограничены в меньшую сторону до половины длинны волны излучаемого ей излучения. Т.е. например если антенной является диполь (вибратор Герца) то его длина не должна быть меньше половины длины волны иначе излучать он будет плохо. Это ограничение можно обойти если использовать специальные согласующие устройства, но проще сделать антенну нужного размера. Связь частоты и длинны волны можно выразить формулой:
Рассчитать длину электромагнитной волны по частоте или частоту по длине электромагнитной волне можно в программе:

длинам, частотаГц

Немного поигравшись с данной программой можно понять что например для частоты 1 МГц (один мегагерц (единица с шестью нулями в герцах)) длина волны будет примерно 300 м следовательно диполь нужен длиной 150 м. Ну хорошо! Давайте тогда повысим частоту до 100 МГц, длина волны тогда будет 3 м а длина диполя 1.5 м что уже вполне приемлемо. А если частота будет 1ГГц (один гигагерц т.е. 1000 МГц) то длину можно сделать 0.15 м т.е 150 мм что вполне даже можно считать весьма компактным! Но не стоит забывать о том что такую частоту способен генерировать далеко не каждый транзистор, скорее даже редкий транзистор, и тем не менее они есть и продолжают появляться новые. У любого транзистора есть такой параметр как "граничная частота" эта частота должна быть больше той на которой будет работать данный транзистор, желательно с хорошим запасом. Высокочастотные генераторы бывают однотактные и двухтактные. Двухтактные, при прочих равных условиях, мощнее поэтому лучше использовать их. Главной составной частью генератора является усилитель (или усилители как например в случае двухтактного генератора). Для того чтобы "превратить" усилитель в генератор ему надо создать положительную обратную связь с LC контуром. Если в обратной связи не будет LC контура а будут только конденсаторы или только катушки то вероятно что генератор будет генерировать но создавать несинусоидальные колебания, например это происходит во всем известном мультивибраторе:
Рисунок 1 - Мультивибратор

Обратная связь в мультивибраторе осуществляется через конденсаторы C1 и C2. Транзистор VT1 включен по схеме с общим эмиттером т.е. на этом транзисторе сделан инвертирующий усилитель т.е. такой который инвертирует сигнал на выходе по сравнению с сигналов на входе или также можно сказать что он как бы усиливает сигнал потом смещает его по фазе на 180 градусов и выдает на выход:
Рисунок 2 - Инвертирующий усилитель
Вместо усилителя на биполярном транзисторе может быть усилитель на полевом MOSFETе в схеме с общем истоком:
Рисунок 3 - Усилитель на MOSFETе

Такой усилитель тоже будет инвертирующим. Через конденсатор C1 выход первого усилителя (назовём первым усилителем усилитель на транзисторе VT1) соединен со входом второго (на VT2), через конденсатор C2 выход второго транзистора соединен со входом первого т.о. получается как бы кольцо и в этом "кольце" из двух инвертирующих усилителей сигнал дважды сдвигается на 180 градусов что в целом даёт сдвиг на 360 что создаёт положительную обратную связь - т.е. одно из необходимых условий для возникновения генерации. Резисторы R2 и R3 задают рабочие точки транзисторов, R3 для транзистора VT1, R2 для транзистора VT2. Если в цепях обратных связей не будет ни конденсаторов ни катушек то получиться прото бистабильная ячейка которая имеет два состояния как RS триггер:
Рисунок 4 - Бистабильная ячейка

Такая ячейка или триггер не будет сама по себе генерировать. Если вместо биполярных транзисторов использовать MOSFETы и немного изменить схему то получиться, так называемый, ZVS генератор который часто используют самодельщики для создания индукционных нагревателей, повышающих преобразователей для получения красивой дуги или электрошокеров и ещё много других интересных вещей.
Рисунок 5 - ZVS генератор

Этот генератор работает по такому же принципу, у него есть два инвертирующих усилителя, обратные связи и LC контур для генерации синусоидальных колебаний. Схема для генерации синусоидальных колебаний высокой частоты на биполярных транзисторах будет выглядеть примерно так:
Рисунок 6 - Двухтактный LC генератор на биполярных транзисторах

Для того чтобы такой генератор был высокочастотным ему нужны высокочастотные транзисторы, например КТ904А. КТ904А - это не самые высокочастотные и не самые мощные транзисторы но и они кое что могут.
Рисунок 7 - Транзистор КТ904А

Этот транзистор с виду напоминает странный наполовину золотой болт, но на самом деле он просто немного позолочен для лучшего отвода тепла т.к. золото очень слабо окисляется.
Со схемой на рисунке 6 можно даже немного аккуратно поэксперементировать. Желательно чтобы у источника питания было ограничение по току. Если его нет и например используются батарейки то можно использовать резистор по питанию например на 10 Ом  или больше. Проверена на практике например такая схема:
Рисунок 8 - Двухтактный ВЧ генератор с номиналами

Катушки L1 и L2 - это, на самом деле, одна катушка с отводом от середины который подключен к "+" питания (с учётом резистора для ограничения тока). Эта катушка например может иметь 4 витка диаметром 3.5 См и некоторой длинной которую можно изменять в широких пределах для подстройки частоты. В более удобном, для начинающих, виде схему можно представить так:
Рисунок 9 - Удобная схема

Схему можно запитать от 4х пальчиковых батареек с напряжением каждой 1.5В. Можно подать и большее напряжение но не слишком чтобы транзисторы не сгорели и при этом желательно следить за током потребляемым данным генератором.
Видео по данной теме или видеовариант данной статьи с тестами собранной схемы:

Проверка с индуктивными антеннами:

 О том как рассчитать резонансную частоту LC контура можно прочитать в статье http://electe.blogspot.ru/2011/02/blog-post_13.html. Для рассчёта этой частоты надо знать ёмкость конденсатора C2 и индуктивность самодельной катушки. С ёмкостью всё просто т.к. она обычно пишется на корпусе конденсатора или же приобретается конденсатор с заранее известной емкостью а вот определить индуктивность самодельной катушки не так просто. Но всё таки существуют эмпирические формулы для примерного расчёта емкости однослойной катушки без сердечника. Для примерного расчёта резонансной частоты LC контура, а следовательно и частоты основной гармоники генерации данного генератора, можно воспользоваться программой ниже:
Рисунок 10 - Вспомогательная картинка для использования программы ниже



Диаметр катушки =
Длина катушки =
Число витков катушки =
Ёмкость C=

Резонансная частота f=
Период колебаний T=
Индуктивность катушки L=


КАРТА БЛОГА (содержание)