Мостовые схемы могут применяьтся для: измерения сопротивления, выпрямления (преобразования постоянного тока в переменный), инвертирования (преобразования постоянного тока в переменный).
Рисунок 1 - Мостовая резистивная схема
Рисунок 2 - Инвертор в первый полупериод
Если ключи S1 и S4 замкнуты а ключи S2 и S3 разомкнуты то ток в нагрузке Rн будет протекать как показано на рисунке 3. Для создания синусоидального тока в нагрузке поледовательно с ней может быть поставлен последовательный колебательный контур, при этом частота смены состояний ключей должна быть меньше или равной резонансной частоте контура.
Рисунок 3 - Инвертор во второй полупериод
Ключевые элементы обладают высоким сопротивлением в закрытом состоянии и низким в открытом поэтому в схеме на рисунке 3 (учитывая что сопротивления S1, S4 не нулевые а сопротивления S2, S3 не бесконечные) на элементах S1 и S4 падение напряжения будет значительно меньше чем на нагрузке поэтому в них будет выделяться небольшая мощность. Если пренебреч проводимостью ключей S2 и S3 то мощность выделяющуюся на элемнтах S1 и S4 можно расчитать по формуле:
Где Rs1 - сопротивление замкнутого ключа S1, Rs4 - сопротивление замкнутого ключа S4, Rн - сопротивление нагрузки, E - напряжение источника питания. На практике не всегда можно пренебреч проводимостями ключей находящихся в закрытом состоянии (с высоким сопротивлением). В ключах S2 и S2 тоже происходит потеря мощности так как через них протекает небольшой ток.
Собрав схему на рисунке 4 можно исследовать работу мостовой схемы изменяя сопротивления подстроечных резисторов и наблюдая за яркостью свечения светодиодов.
Рисунок 4 - Мостовая схема с подстроечными резисторами
Из картинок видно что изменением положения движка подстроечного резистора можно добиться изменения направления протекания тока в нагрузке представляющей собой последовательное соединение резистора и встречно паралельного соединения двух светодиодов.
Комментариев нет:
Отправить комментарий