В статье "второй закон коммутации" упоминалось о невозможности скачка напряжения на конденсаторе. Если в цепи с конденсатором есть источник напряжения напряжение которого изменяется по закону:
то напряжение на конденсаторе будет отставать по фазе от тока в цепи. Изменение напряжения конденсатора вызывает появление тока в цепи. Ток прямо пропорционален изменению напряжения и ёмкости конденсатора. Математически это можно записать так:
Конденсатор можно сравнить с пружиной если представить что ток это скорость одного конца пружины (при этом учитывая что другой её конец неподвижен), напряжение это сила создавемая пружиной а величина обратная жёсткости пружины это ёмкость. Сжимая пружину можно измерить силу создаваемую ей. Чтобы сжать пружину нужно приложить к ней силу при этом незакреплённый конец пружины будет двигаться с определённой скоростью. Сжав пружину и отпустив её можно заметить что скорость незакреплённого конца пружины моментально увеличивается и чем сильнее сжата пружина и чем меньше её жёсткость тем больше будет скорость. Для наглядности изменение тока конденсатора и его напряжение можно представить в виде графиков:
Если посмотреть на рисунок то можно заметить что в момент времени t=0 напряжение на конденсаторе максимальное и около этой точки изменение напряжения за небольшой промежуток времени (например от t=0 до t=0.01) не велико, ток в пределах этой точки мал. В точках где напряжение переходит через ноль изменение напряжения максимальное поэтому ток в этих точках имеет самое большое значение если напряжение увеличивается и самое маленькое если напряжение уменьшается. Взяв любую точку и измерив в её пределах изменение напряжения и ток можно убедиться в том что ток прямо пропорционален изменению напряжения. Если подставть (1) в (2) то можно получить закон изменения тока конденсатора:
Откуда видно что напряжение на конденсаторе отстаёт по фазе от тока конденсатора на 90o. Максимальное значение тока связано с максимальным значением напряжения соотношением:
Если программа не работает то скопируйте её html код в блокнот и сохраните в формате html.
то напряжение на конденсаторе будет отставать по фазе от тока в цепи. Изменение напряжения конденсатора вызывает появление тока в цепи. Ток прямо пропорционален изменению напряжения и ёмкости конденсатора. Математически это можно записать так:
Конденсатор можно сравнить с пружиной если представить что ток это скорость одного конца пружины (при этом учитывая что другой её конец неподвижен), напряжение это сила создавемая пружиной а величина обратная жёсткости пружины это ёмкость. Сжимая пружину можно измерить силу создаваемую ей. Чтобы сжать пружину нужно приложить к ней силу при этом незакреплённый конец пружины будет двигаться с определённой скоростью. Сжав пружину и отпустив её можно заметить что скорость незакреплённого конца пружины моментально увеличивается и чем сильнее сжата пружина и чем меньше её жёсткость тем больше будет скорость. Для наглядности изменение тока конденсатора и его напряжение можно представить в виде графиков:
Рисунок 1 - Графики тока и напряжения конденсатора
Откуда видно что напряжение на конденсаторе отстаёт по фазе от тока конденсатора на 90o. Максимальное значение тока связано с максимальным значением напряжения соотношением:
Отношение напряжения к току даст ёмкостное сопротивление. Формулу (4) можно свести к виду:
Из выражения (5) видно что ёмкостное сопротивление конденсатора зависит от ёмкости конденсатора и частоты источника напряжения.
Программа расчёта ёмкостного сопротивления конденсатора:Если программа не работает то скопируйте её html код в блокнот и сохраните в формате html.
Комментариев нет:
Отправить комментарий